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Abstract

A new representation, called the total hazard construction, of dependent

random variables by means of independent exponential random variables is

introduced. Conditions which imply association of nonnegative random

variables are found using this construction. Furthermore, new conditions

which.imply stochastic ordering between two nonnegative random vectors are

obtained. These strengthen previous results of the authors. Further

applications in reliability theory and in simulation are indicated.
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1. Introduction.

Let T be an absolutely continuous random variable to be thought of as a

lifetime of a device. If F and f are, respectively, the distribution and

the density functions of T then F = 1 - F, A = - log T and x = f/F are,

respectively, the survival, hazard and hazard rate functions of T. It is

easy to verify that if X is standard (that is, mean 1) exponential random

variable then

(1.1) T M (x)

satisfies

(1.2) St T

where 't' denotes equality in law.

Equations (1.1) and (1.2) suggest that study of A can shed light and

understanding on the stochastic behaviour of T. One purpose of this paper is

to introduce and study a multivariate analog of (1.1) and (1.2). This is done

*. in Sections 2 and 3 where it is shown how to transform a set of independent

standard exponential random variables Xl,..., Xn  into a random vector

which i' stochastically equal to a given random vector T. The

transformation uses multivariate hazard functions (to be defined in Sections 2

and 3) and will he called the total hazard construction.

In Section 4 we list conditions under which the transformation

(X1,.... Xn) T is increasing (in this paper 'increasing' stands for

nondecreasing' and 'decreasing' for 'nonincreasing') in each of the Xi's.

Under these conditions, then, the random variahlos T ,...,T n(and hence
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TI,...,Tn) are associated in the sense of Esary, Proschan and Walkup (1967).

Let S and T be two absolutely continuous random variables with hazard

functions Q(w) E - log P{S>w} and R(w) =- - log P{T>w}. Then, using the same

standard exponential random variable X, one can apply (1.1) and (1.2) to

obtain S and T, defined on the same probability space, such that

(1.3) H Q-I(X) st S, T RI(X) _t T.

*. If

ii

(1.4) Q(w) > R(w), w > 0,

" then, from (1.3), S St i t _ T. Thus we see that (1.4) implies stochastic

ordering of S and T. In Section 5 we obtain a multivariate extension of

this result, again using the total hazard construction of Sections 2 and 3.

Further applications are given in Section 6.

A random variable S is said to be stochastically smaller than a random

variable T (denoted S t T) if P{S > u} < P{T > u} for every u. A

random vector S = (SI,...,Sn) is said to be stochastically smaller than a

random vector T = (TI,...,Tn) [denoted S t T] if

(1.5) g(S) t g(T)

for every increasing Borel measurable real function g. A function g is

called increasing if (xl,...,xn) ' (yI '....Yn) implies

g(xl,...,Xn) g(yl,...,yn) where (xl,...,xn) 1 (Y1,...,yn) means

xi < Yi' i = 1,...,n . It is well known that S t T_ if and only if
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Eg(S) 4 Eg(T)

for every increasing Borel measurable real function g for which the

expectations exist. Also S tT if and only if

' P{S c U) < p{T c U1

for every Borel set U which has an increasing indicator function.

2. The total hazard construction: bivariate case.

Consider two nonnegative random variables T1  and T2 with absolutely

continuous joint distribution function F, joint density function f and

joint survival function F defined by F(tl,t 2 ) P{T 1 > t I , T2 > t 2). The

conditional hazard rate of Ti at time t, given that T3 i > t is defined

as

(2.1) A1(t) E m - P{t < Ti< t + AtIT 1> t, T2 > t}
At+O At

[I(t,t)]-1J - I-I t=t2-t ) t > 0, i 1,2.

Given that T2 = t2, the conditional hazard rate of T1  at time t > t2  is

defined as

(2.2) P{t < T < t + AtIT 1 >t, T2  t21
At0

f(t,t
2 )

2
at "2
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(Substituting t and t2  in the right hand side of (2.2) may yield 0/0.

Here and in the remainder of the paper such a ratio is interpreted as 0.)

Similarly define

f(tl,t)

(2.3) x2 (titl) - -f(t,t) t)
2 1 at I  1 P

The total hazard accumulated by time t by the random variable Ti,

given that min(T 1 ,T2) > t, is defined by

(2.4) Ai(t) x xi(u)du, t o 0, i = 1,2.

Given that T2 = t2  and that T1 > t2, the total hazard accumulated by the

random variable T1  during the time interval [t2 ,t2+t) is defined by

(2.5) Al t -- t 2 du ,  t 2  > O , t 0 O.

Similarly

(2.6) A2(l I  
= f t I + 2t t)du , t I > 0, t ; 0.

(2.7) -L-Al(t It2 x l(t2+tIt2 ) , t 2 > 0, t 0 ,

tit+

Not t at wit thi defintion

(2.7) .- A1(~ 2  X (t +tit,), t > 0, t 0,

(2.8) - A 2 (tt)+t t) t1  0, t 1.

The total hazard accumulated hy TI  by the time it failed is defined as

............................. . ....... .. .. *.. . .... ..
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Al(T 1) if T, 4 T2 and as Al(T 2 ) + A(Tl-T2IT2 ) if TI > T2 . Similarly

define the total hazard accumulated b T2  by the time it failed.

Define the inverse functions

Ai (x) - inf{t > 0: Ai(t) > x}, i = 1,2, x > 0,A11(xjt2 )  inf t > 0: A1(tit2 x}, x > O, t2 > 0,

A2
1(xlt1) inf{t > 0: A2 (tltl) > x}, x > 0, t1 > 0,

and consider the functions a1:R+ + R and a2 :R+ + R define as follows: On

2 -1 1{(x1,x2 ) c R+: Al (xl) 4 A2 (x2 )},

(2.9) a1(xlx 2 ) A 1 (xl),

(2.10) a2 (xlx 2 ) A1 
1 (X1 ) + A2

1(x 2 -A2 (A1 (x 1 ) )iA 1 (x 1 )),

2 -1 (1and on {(xlx 2 ) c R+: A1 (X1 ) > A2 (X2 )}

(2.11) a1(xl,x 2 ) A2
1 (x) + 1 (X1-A1(A2 1 (X2)IA2'(x 2 )),

-1(2.12) a2 (xl,x2 ) - A2 (x 2 )

Motivated by the fact (see Remark 2.2 below) that the total hazards

accumulated by T, and T2  by the time they failed, are independent standard

exponential random variables we introduce the following total hazard

construction:

Let X, and be independent standard exponential rando variables

and consider the following transformation:

T, a, (X , X2 )
(2.13) ) a 2 (X 1 ,X 2 )

-',% ..... *. 2 *. , ° " " - .a2 " 2 " . ." ° - o " . '""

_ • ~............,,.....-., , ,. . ... ~ *- , •. ,-.
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Theorem 2.1. Let (T1,T2 ) be defined as in (2.13) where X1  and X2  are

independent standard exponential random variables. Then

(2.14) (TIT 2 ) at (T1,T2 )

Proof. Let Xi' xi('t 2), and so on, be the analogs of xi, xI(.It 2 ) and

so on, defined in (2.1) - (2.3) with Ti replacing Ti, i = 1,2. We will

show that

(2.15) X(t) = Al(t), t ) 0,

(2.16) x2 (t) = X2 (t), t 0 0,

: (2.17) 1(tlt 2 ) = x1(tlt 2 ), t > t 2  0 ,

- (2.18) x2 (tI 1t) = X2 (tt1 ), t > t I > 0,

and the result then follows from the fact that

Yi.), A2(.), l(.Ilt2 ), 2 .tl'), t I  0 O, t 2 > 0 uniquely determine f

(see, for example, the explicit formulas in Cox (1972) or in Shaked and

Shanthikumar (1984a)) and that

I(.), x 2 (.), xl(.1t 2 ), X2 1.(tl), t I ) 0, t2 > 0, determine the joint

density of T and T2 in a similar manner.

To show (2.15) notice that

IT1 > t, T2 > t } = {A1 (XI) > t, A2 (X2 ) > t} = {X1 > A1 (t), X2 > A2 (t)•

Hence, for t > 0,

P{t < TI 1 t + AtIT 1 > t, T2 > t}

= P{t < Al (XI) 4 t + AtIX 1  > Al(t), X2  > A2(t)1

= P{AI(t) < XI 4 AI(t + At)1X I > A1 (t), X2 > A2 (t)}
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= P{X1 4 Al(t + At) - At(t)}

1 - exp{-(Al(t + At) - A1(t))}.

Thus

XM = 1rn L PIt < T 4 t + Atif > t f > t}
AtOAt

= lim 1 (1-exp{-(Al(t+At) - A1 (t))})
At+O At

d

- t Al(t) = xI ( t )

';

and (2.15) follows. The proof of (2.16) is the same.

To prove (2.17) note that for t > t2 > 0,

{T1 > t, T2 = t 2}
1 2 A 1 -1

= {A2 (X2) + AI1(X 1 -A 1 (A2 I(X 2 ))JA 2 (X 2 )) > t, A2 (X2) = t 2}
= I + A-1 (-1
= 1t2 + A1 1(X 1 -A1 (t 2 )1t 2 ) > t, A2 (X2 ) = t 2}

= {XI > A1(t2 ) + A1(t-t 21t 2 ), A2 1(X2 ) = t 2}

Thus, for t > t2 > 0,

P{t < TI( t + AtIT 1 > t, T2  t 2 }

Pft < A2 (X2 ) + AI (XI-A (A2 (X2 ))IA 2 1(X2)) t + At

IXI > Al(t 2 ) + Al(t-t 2 lt 2 ), A2  (X2 ) = t 2}

= Pit-t 2 < AlI (X-Al(t2 )lt2) < t + At - t 2

Ix1 > A1 (t 2 ) + Aj(t-t 2 jt 2 ), A2
1 (X2 ) t 2}

= P{A (t 2 ) + A,(t-t 21t2) < X 1  (t 2 ) + A(t-t2+Att 2)

i > A1(t 2 ) + Al(t-t2't2), A2 (X2 ) = t 2}

= P{X A1 (t-t 2 +Atlt 2 ) - A1(t-t 21t 2 )}

11
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Hence, for t > t 2 ; 0,

(tt2 -exp{-(Al(t-t 2 At 2 ) - Al(t-t 21t 2))I)

At+0

=ddat Al(t-t2t2 = xl(tt 2 )

(2.7)

and (2.17) follows. The proof of (2.18) is the same. ii

Remark 2.2. From (2.13) one easily obtains: On {T1 
< T2} = AI(TI)

X2 = A2 (TI) + A2 (T2-T11TI), and on {T, > T2}

= AI(T 2 ) + AI(TI-T 2 1T2 ) , X2 = A2(T2 ) . Thus X1  and X2 are the total

* hazards accumulated by T1  and T2 by the times they failed. Since (TI,

T2 ) t (TI' T2 )
'  it follows that the total hazards accumulated by T1  and

T2  by the time they failed are independent standard exponential random

variables (see also Remark 3.2).

Exampl- 1 (Freund (1961) distribution). The Freund distribution provides a

model in which the exponential residual life o" one component depends on the

working status of another component. It has the density

(2.19) f(tl,t 2 ) = a'exp{-(a+ - ')t I - 't 2 } if ) < t < t 2

= s'B exp{-a't I  - (a+6-t')t 2} if 0 < t2  1 t I

where a, C", 39, 3 are nonneqative parameters. For this distrihution

A (t) = t, t > 0,

A2 (t) = 3t, t ) 0

- \* - -2
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A1(tft 2 ) a 't, t 0' t 2 > 0

A2 (ttl) : I 't, t 0 0, t I . 0

If (TI,T 2 ) has the joint distribution (2.19) then from (2.13) and (2.14)

it follows that it has the same distribution as (T,T2 ) where

1

(2.20) T1 = a if a 1X1  2

= I2 + (a')-(X 1-6
1 X 2 ) if a-IX 1  X2

T2 = aX 1 + (')- (X2-a ) if x

-1 -1 'X
= 2 x
= B-Ix2 if a-Ix I 1 > -Ix2 ,

and X, and X2  are independent standard exponential random variables.

Representation (2.20) can be rewritten as

= a-I 1

(2.21) T1 = l X if a-1 X x
111 2'

= (a' )-X I + B-(1 - )X2  if -1x -1

-fI 1 - Ct if a 1  2
SI(, B + -1 -1X2

= 1X +  if a-X x
S x2  1 2

Representation (2.21) is identical to (7) of Shaked (1984).

The example will be continued later.

Example 2 (bivariate Pareto). Let (TI,T 2) have the joint survival function

F(t = (+tl+t 2 )-1 t, O, t 2  0

It is not hard to verify that in this cise
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(2.22) A,(t) = A2(t) :1 log (1+2t), t > 0

(2.23) A,(tJt 2) = 2 log (1+ t2--), t > 0, t2 > 0
T+t2

(2.24) A2 (tltl) = 2 log (1 + t) t 0, t 1  0

Some algebra shows (using (2.13) and (2.14)) that (T1,T2) has the same

distribution as (TiT 2 ) where

" 1 2

I2X2

1 3 1 2
exp{-X 1 + -X21 -Z(e +1) if X1 > X2 ,

2X1

T2= exp{4X 1 + 7X2 } - Z (e +1) if 2

I 2X2
-(e -1) if X 1 X2

* here X, and X2 are independent standard exponential random variables.

This example will be continued later.

3. The total hazard construction: multivariate case.

Consider a random vector T = (TI ....,Tn). n > 2, with absolutely

continuous joint distribution function. In this section we describe the total

hazard construction of a random vectorT =(TI'...Tn) such that T 5t

The construction will be described in n steps numbered 1 through n. In Step

1 an index j, is chosen at random from {1,2, ...,n and then T. isJl

determined. Upon entering Step k, 2 < k < n, the random variables

T. ,...,T. have already been determined whereTJ I ' k-1

C (1,...,n} . In Step k an index Jk is chosen at
(il ... .. . . . . .*
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random from "J- {1,...,n} - J and then T.ik is determined.

We need to extend and slightly modify the notation of Section 2.

For J = {ill...,lk} C {1,...,n} let ii denote (tjl,..t k). If

= {il,...,in-k then U denotes (ti1 ,...,t i  ). Let e = (1,...,1).1n-k

The length of e will vary from one formula to another, but it will be always

possi.ble to determine it from the expression in which e appears.

For J C {1,...,n} and i c U let Xi(t Ij = tj, *T > te) denote the

conditional hazard rate of Ti  at time t given that T = and that

->-te where tmVt. ax{t:j e J}. If J=0 then

V t. 0 . Formally, for i c U
jcJ J

(3.1) xi(tjT = 1j, j > te)

lir P{t < Ti 4 t + AtJT 1j, I > te}, t > V tj
AtO At Ti tj

(J may be empty). The absolute continuity of T ensures that this limit

exists. To save space we sometimes supress the condition IU > te and just

write Xi (tJTj = 1j, .) but the reader should keep in mind that .' means

T- > te with t being the same as the first argument of x. . The function
J1

iITJ = t J, .) will be of interest for us only on the (random) interval

(max T., min T-], however, to avoid a discussion of such random hazard rate
jC J io

functions [such a discussion can be found in Arjas (1981)] we do not emphasize

this point here. Note however that Xi(t1j1 =J , .) is well defined for

every t > V t.

For i c U the total hazard accumulated by Ti during the time interval

[ V tj, V t. + t), t 0 0, is defined by
jCJ jCJ J

V t.+t
jCJ J

(3.2) Ai(t Xi Oil = ) j o = )du, t > 0, i c U(t V ftj

jCJ

" , " , , -. , " - _ , " • . " • ..
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When J 0 , Ai(tIT = t) will be simply denoted by Ai(t)

We will introduce now a notation for the total hazard accumulated by

Ti  by time t. Fix t > 0 and suppose that it is given that Tj..., TjkI

(k > 1) failed at times tjl,...,tjk_l, respectively (tj <...<t.k-l C t)

and that all the other Tj's are alive at time t. For i ffjl,...,Jk-119

denote

" i l 'l," -,Jk-l ( i k-1 I

k-i+ I2 Ai (t j  - tj i T ' I = tjl,...,Tjl = tj _

•"+ Ai (t -t jik  _JTj = tj. ... ,T jR : t. -) •

" 1+. -I J l ~ -i uk-i

- Also denote (corresponding to the case k = 1)

i (t) - A i (t), t > 0.

Note that for tj < <tj and i {jl,...,Jk l},

'ill.'"'Jk-l tk-lltjl''"ti k-1) il

k-i
+ I. Ai(tj- t. ITl: tj , ...,Tj tj l

X=2 2 Z-1 1 Z-1 Z

The total hazard accumulated by Ti hy the tine it failed, given that
Ti was the k-th Tj to fail and that Tj I ... failed before Ti, is

. (T. IT. T. ) .

D in. ..e kt l i n J l 
...' T k -

Define the inverse functions
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Ai (x) = inf{t > O:A i (t) > x}, i = 1,2,...,n, x > 0,

and for nonempty J C {1,...,n}, .- > Oe and i c -,

Ai1(xi T = ij) = inf{t > 0: Ai(t I j) x}, x > 0.

Motivated by the fact (see Remark 3.2 below) that the total hazards

accumulated by T1,..., Tn by the time they failed, are independent standard

exponential random variables, we introduce and study the following total

hazard construction:

Let Xl,...,Xn be independent standard exponential random variables.

Step 1. Let j, be the (random) index (which, by absolute continuity, is

" unique with probability 1) such that A- (Xj) min{Al (Xi): i = 1,...,n}"i Jl 1

"" and define

= -1

(3.3) Tj A A(Xj

Step k (k = 2,...,n). Given that Steps 1,2,...,k-1 resulted in

TJ t. i.... tj. let J = {Jl,'..Jk-I}" Let Jk be the

(random) index (which, by absolute continuity, is unique with probability 1)

such that

A [Xk J (tjk It1..t )T= 1'.T tjk

Srain[ - 3k 3ilj '" k-1 k-1 i k-1 i ' jk-1 3 k-1

min-1 [ .j (t I t Tj T

='A 1 - J = k
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It is easy to verify, by induction, that the arguments of A:' and A:', in

the above expression, are nonnegative. Having chosen the (random) index Jk

as described above, define

(3.4.i) Tjk = Tjk-1

'''"k k Jkli'..k-1(k-i ' -1 J l 3 k-1 Jk-1

More explicitly,

(3.4.ii) T jR. + A j[Xj - A. (T. )

k-1 A A AA (T -Tj IT. T = T )I Tj = T .. .= T
x=2 ik i Z-1 l 1 jq- X1 j1 J IJk1 k-1

For example, if n : 3 and A1(XI ) < A21(Y ,  ^lI(XI1 < A31(X3 and

A2
1 [X2 -A2 (AII(Xl))IT, A11(Xl ) ] < A313X - A3(AII(XI))IT I  A 1 (Xl then

(3.5) T A (X

1 -1 ( 1)
(3.6) 2= + 2 1 [X2 " A2 (T1 )IT, :1

T 1 + A21[X 2 - '21t(TiI')IT = T1]
A A 1 AAAA(3.7) T T + A -X AB(T) A- = T)IT fl' T2

=T + A-1x 3j,(T IX)IT, = T1, T = T
2 3 X3 T 3122 22 2

Theorem 3.1. Let T be as defined in (3.3) and (3.4) where Xl,...,X n  are

independent standard exponential random variables. Then

(3.8) St T
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To prove Theorem 3.1 define Xi analogously to the definition of xi in

(3.1) with T replacing T. Then all that is needed to complete the proof

(see, e.g., Shaked and Shanthikumar (1984a)) is to show that for all

J C {1,...,n} , i c J, t > V t we have

jetJ

(3.9) ji (t~i = -J, ) Xi (t IT = J, )

The proof of (3.9) is similar to the proofs of (2.15) - (2.18) but is

notationally more involved. We omit the details.

Remark 3.2. It can be shown, using (3.3) and (3.4) that, for every

permutation (Jli'...,n) of (1,...,n), on {T. T. ...<T } we haveJ, 2 in

X. = (T j),

Xj = T Tkl. ), k 2,...,n

thus X1 ....Xn are the total hazards accumulated by T by the times

they failed. Since T §t _ it follows that the total hazards accumulated by

TI,...,T n  by the times they failed are independent standard exponential

random variables. This fact generalizes Theorem 2.2 of Schechner (1984). It

also follows from Section 4.5 of Aalen and Hoem (1978) and Proposition

2.2.11 of Jacobsen (1982).

Remark 3.3. It should be emphasized that the total hazard construction (3.3)

and (3.4) is theoretically and practically different than the following well

" known standard construction (see, e.g., Law and Kelton (1982), p. 268 or

Rubinstein (1981), p. 59):

%.
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Let U1, U2,...,U n  be independent uniform [0,11 random variables and let

T = (TI,...,Tn) be an absolutely continuous random vector. Define

(3.10) Tj = inf{t 1 : P{T 1 > t1} > UI}

. (3.11) T = inf~tk: P{T k > tkIT 1 = Ti,...,Tk = Tkl} > Uk}, k = 2,3,...,n.

Then

(3.12) (T1 .. .T') (t ,, . )

Although the construction defined by (3.3) and (3.4) is different than

the one defined by (3.10) and (3.11), the results which follow from (3.3) and

(3.4) have analogs which follow from (3.10) and (3.11). These analogs will be

"* noted throughout the sequel.

4. An application: association of random variables.

4.1. The bivariate case.

Let T1  and T2  be nonnegative absolutely continuous random variables

as in Section 2 and let TI and T2 be defined as in (2.13). Since

(T1 , T2) t (T1, T2 ) we will not distinguish in this section between T and

and just write T

If the functions a1  and a2 defined in (2.9) - (2.12) are increasing

in each argument when the other argument is held fixed then from (2.13) it

follows that T, and T2 are associated in the sense of Esary, Proschan and

Walkup (1967). Association is a property which yields important probability

inequalities and is particularly useful in reliability theory (see, e.g.,

Barlow and Proschan (1975)). Thus it is of interest to find conditions which
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imply that a1  and a2 are increasing.

Theorem 4.1. If for all y 0 0, u 0 0, b 0, i = 1,2,

(4.1) Ai (y+u) - Ai (y) + Ai (bL y + u ) < Ai (u +b ly )

then T1  and T2  are associated.

Remark 4.2. Intuitively, for i = 1 say, Condition (4.1) says that the

larger T2  is (compare T2 = y to T2 = y + u) the smaller is the potential

hazard that can be accumulated by T1  by the time y + u + b (see Figure

4.1). Thus, roughly speaking, the larger T2  is the larger T, is and so

the association of T1 and T2  is not surprising. For a similar result see

* Arjas and Norros (1984).

Proof of Theorem 4.1. We just have to show that a1 (xl,x 2 ) and a2 (xl,x 2 )

increase in xI and x2. The result then follows from Esary, Proschan and

Walkup (1967).

Consider al(xl,x 2 ). It is easy to see that, for a fixed x2, al(xl,x 2 )

increases in x1 . Thus one just has to show that, for a fixed x1, the
function al(xl,x 2 ) = -(x2 ) + A1 xA(A(x2)IA21 (x2)]  increases in

x2 E [0, A2 (AI (xl))] Denote t A2 1(x2), t1  Al 1 (xI  We need to show

then that, for each t, > 0,

(4.2) (tl~t)  7- t + Al 1[AI(tl )  -A1(t)Jt ]

increases in t - [0, tl]

-h

d , ; , ; ' . ''', '. - ' -, '' , '- ''- ' -.-.-.-. . -' . ° '.. . . '..'.. ', ,.,. . . ' . . ., ".,



A(t-y ly)

A(t-y-u Iy+u)

A()

-. -- ... ~RHS(4.1)

j LHS(4.1)

y y+u y+u+b

dFigure 4.1. Illustration of (4.1).
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Rewrite (4.2) as Al(tl) - Al(t) = Al[a(tl,t) - tit ]. Similarly, if

u > 0 and t + u ti then

SA1 (tl) - A1 (t+u) = Al[a(tl,t+u) - t - ult + u]. Thus

(4.3) Al(t+u) - Al(t) + A1[a(tlt+u) - t - ult + u] = Al[a(tlt) - tit].

But, by (4.1) [here LHS : left hand side, RHS : right hand sideJ,

LHS (4.3) < A1[a(tl,t+u) -tit]. Thus,

Al[a(tl,t) - tjt] 4 Al[(tl,t+u) - tit ] . But, for each t, Al(blt) is

increasing in b. Hence a(tlt) 4 a(t1,t+u), that is, (tl,t) increases

in t c [O,t1 ].

Similarly it can be shown that a2 (xl,x 2) increases in

-12 -1x£ € [, Ai(A 2 1(x 2))].,,

Condition (4.1) can be written by means of derivatives (if they are well

defined):

Theorem 4.3. If for i = 1,2,

(4.4) xi(y) +.-. Ai (bla)la=y < Xi(y+bly), b 0 0, y ; 0

(provided the derivatives in (4.4) are well defined) then T, and T2  are

associated.

Proof. Rewrite (4.1) as: for i =1, 2, y > 0, b 0,

(4.5) [Ai(Y+u) - Ai(Y)] + [Ai (bly+u) - Ai(bly)] < Ai(b+uly) - Ai(hly), u > 0.

Dividing (4.5) by u > 0 and letLing u 0 one obtains (4.4) from (4.5). To

• -1-.:1. .--.- , -:.:.:-, ..- 1 :, .. 1. . .. L.-. v ..-.-.- :..:.:.::..i v v i..--- ..-..-.-. .. -,-.-. - -.-.. --. W I>, -.-.-.. "--.. -.
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obtain (4.5) finm (4.4) integrate (4.4) with respect to the dummy variable

y. 11

Example 1 (continued). From (2.21) it is easily seen that if

(4.6)- 4 a, and B 4 B,

then T and T2 are increasing functions of X, and X2 . Hence if

(TI,T 2) has the Freund distribution with parameters satisfying (4.6) then

T1  and T2  are associated. This result has been obtained also in Shaked

(1984).

Example 2 (continued). Differentiating (2.22) - (2.24) one obtains

1
i (y) 2y i = 1,2,

_yby 2 12
i(Y+b \l 1+2y+b -4i = 1,2,

= -4b i=12

a aiba=y = (1+2y)(1+2y+b)'

It is not hard now to verify (4.4). Hence if (T1,T2 ) has the bivariate Pareto

distribution then Ti and T2 are associated.

This result is not surprising. Shaked (1977) has shown that the

multivariate logistic distribution of Malik and Abraham (1973) has some

positive dependence properties. Since the multivariate Pareto distribution is

a simple transformation of the multivariate logistic distribution it follows

that also the multivariate Pareto distribution has some positive dependence

properties. It is not hard to find other representations of T, and T2 as

incresing functions of independent random variables.
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Example 3 (bivariate Gumbel exponential distribution). Let T1 and T2 have

the bivariate survival function

T(tl,t 2 ) = exp{-t 1 -t 2-Ot 1t2}, tI 1  0, t2 > 0,

where a e [0,1] is a fixed parameter. Here

(4.7) Al(t) = A2(t) = t + 1 t2 , t 0 0
1- 2

1+et+Ou
(4.8 Alut) : A2(ult) : u + Otu - log 1+et , t 0, u 0.

The inverses A1
1 and A2

1 do not have as simple expressions as in Examples

1 and 2 but it is still not hard to check (4.4). Differentiating (4.7) and

(4.8) one obtains

xi(y)= 1 + ey , i = 1,2,

Ai(y+b y) = 1 + Oy - T+ob+oy ' 1,2,

a Ai(bla) : ob 0 0aa i ay 1+ob+Oy + + 1 = 1,2.

Substituting these in (4.4) it is seen that (4.4) does not hold. Thus we

cannot show that TI and T2 are associated. In fact T, and T2 are not

associated. This follows from the fact (Johnson and Kotz (1972), p. 262) that

they are negatively correlated.

4.2. The multivariate case.

Let T = (T1,...,Tn), n 3, be a nonnegative absolutely continuous

random vector as in Section 3 and let T he defined as in (3.3) and (3.4).

As in Section 4.1 we will not distinguish between T and T and just write

T.

.' €, ,' -''-.''.- " "- ,"' ",. " " '-"°," ." '-"-"."' - " " ."',.'. ... ,'"2..'*. '.-z .'r' €". . .-". . - ." - "
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To clarify the general condition in Theorem 4.4 below, consider the

case n = 3. Following (3.5) - (3.7), for x = (xl,x 2,X 3) which satisfy

A1 (xi) 4 min (A21 (x2 ),A 3 (x3 )) and A2 1 (X 2 l(AI 1(xl))I = A, 1 (Xl) )

< A3 1 (x3 -A3 (A I (x 1 ))ITI = A, (xY)) let

a1(XlX 2,X3 ) A1 (x 1 ),

a (X1 X, - a1(x) + A2
1[x2 - , al(x)aj()Ti =a1 (x)]a2(x 29x 3 )  a 1x2)]2

al(x) + A21[ x2 - A2 (al(x))IT I I aZ(x)] ,

a3 (xlx 2 ,x3 ) - a2 (x) + A31[x3-=311,2(a2(x)jal(x),a2(x))jT= al(x),T 2 = a2 (x)]

= a2(x) + A3 [x 3 - A3 (al(x))

- A3 a 2 tx) - al(x)ITI = al(x))IT, = al(x), T2 = a 2 (x)].

Clearly, on the given domain, each ai increases in xl, each of a2 and

a3  increases in x2 and a3  increases in x3. Thus, to find conditions for

association of T1, T and T3 we only need to find conditions such that

(4.9) a2  increases in

(4.10) a3  increases in x2 ,

(4.11) a3  increases in x2.

As in Section 4.1 it can be shown that (4.9) is the same as

211 (t21t 1 2 1 1 (t 2 1tl+u), t2 t1 + u 1 0, or, more explicitly,

(4.12) A2 (tl) + A2 (t 2 -tlIT,=tl) j A2 (t 1 +u) + 2 (t 2 -tl-ULT 1 =tl+u), t 2 ' tY+U t i  0,

or, by means of derivativws,
X2 (tl) 1 X2 (t 2 1Tl=t I,.) _ _ A2 (t 2 _tITl=cI)I t , tq t I  0. Similarly,

' 3cI  Cl1t

-.
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(4.10) is the same as

311,2(t31tz ~t2) > 31Z,2(tjltl t2u), t 3  > t 2  + u 1 t 2  > t I  > O, or more

explicitly,

(4.13) A3 (t2-tlITl=tl) + A3 (t 3 -t 2 T1 =tZ, T2 = t 2 ) >

A3 (t 2 +u-tllT1=tl) + A3 (t 3 -t 2 -ulT 1 =t I , T2=t2 +u), t3  t 2 + U > t 2  t > 0,

or, by means of derivatives,

X3 (t 2 ITz=tl,.) < X3 (t 3 1Tl=t 1 ,T 2=t 2 , - ) A 2Tl= t ,Tac2  it 2 c 2 =t2

t3 > t2 ' t1 > 0 . Finally, (4.11) is the same as (here

a + 1 (a)IT=a),x2 > 0, a ) 0)
2(2a)E a 2 ( 2 - 2(a 1 a)x

U31 1, 2(t 31 t1 a2(x29,tl) 1 311, 2(t 31tl+u Ia2 (x2,tlI+u)),

x2  0 O, 0 < t 1  t1 + u < 2 (x2 ,t 1 ) 2 (x2 ,t 1 +u) < t 3 , or, more explicitly,

A3 (t I ) + A3 (a 2 (x 2 ,tl) t1 IT1 = tj) + A3 (t 3 4 2 (x 2 ,t 1 ) Il=t,T 2 =a2 (x 2,tl))

(4.14) > A3 (t 1 +u) + A3 CP2 (x2 ,tl+u)-t 1 -uITZ=tl+u)

+ A3 (t 3 - 2 (x 2, t1+u)ITl=t1 +u, T2 :a 2 (x 2,t 1 +u)) ,

x ) 0, 0 4 t I < t1 + u a2 (x 2 ,tl) < a 2 (x2 ,tl+u) t3

(see Figure 4.2) or, by means of derivatives,

1

"J



3 11 2 (titt 2)

=A (t )+iA(t -t IT,=t)
3f 31 32 11

+sA 3(t-t2 JT 1=t11T 2=t 2)

=(tl -u)
31,

4 +A (t- uIT =t -Iu)
-3 CE2--1  1..1

+A 3- 2jT1 =t1-Iu,Tjt2

Y1 1 1 ) A3 1

-+A (t-t IT=t)

I I(tlt 1+u)=\ (t 1+u)

I 31 1 31

- 3

/t

*t t 1 +u t 2 = 2 (x 2 9t 1) E2=i 2 (x 2 9,t1 +t) 3

Figure 4.2. Ilustration of (4.14).
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(4.15) (t + 3t2Tl=tla) +2(x 2'a) + a A (t tiTc

P O(t + X3(t 2 T1 t , aa a t 1 ac1 3 2 = I

+ -L AttT=c. T=tI =

a T a 2 (x2 a)

2+ c2 A3(t3-t2 2=c 2 c=t2  a__ a=tl
a2 (x2,a)

+ B 2 A3 t Tl=tl' T : 2) =t 2  @a 2 a )t

X3(t2ITl=tl") + X3 (t 3 T1 =tl'T 2 =t 2 ) 3a a=t

where in (4.15) t2 - 2 (x2 ,t1).

In the statement of the next theorem we use the notation (see (3.4))

.. a(xktl ... ,tkl)=tk-l+Ak 1 x-pk,...,k I(tkil tl,...,tk-l)lj tl,' ',T k - I tk- j1

Swhich describes, according to (3.4), how Tk is determined, given that

'J1 = i,",jk-i=k-i, Jk = k and that Xk = Xk9 TI = ti,... Tk-1 = tk-l-

Theorem 4.4. If ij l,2,...,i 1l t iltl t2 ,... ,tk  I

ak+l(Xk+l,tl""'*tk)'ak+2(Xk+2't l i .. tk'a'k+l)"'°'

a iX 1 ,tl,.. .tk, ak+l, ... i_2)1 (the arguments of some of the am's

are omitted) decreases in

tk tk tk tk-' ak+1 tk' ai+t a>tt z = k+i,...,i-1} for all

i k < i < n, xk > O,...,x i  0, 0 < tI < t2<.. <t and if the above

coidition holds for all permutations of the indices 1,2,...,n, then

TI,...,Tn are associated.

Sketch of the proof. The conceptualy simple but notationally involved proof

of Theorem 4.4 is similar to the proof of Theorem 4.1 and we will omit the

details. The idea of the proof is as follows: According to (3.4), given

that Ji = l,...,JiI = i - 1, Ji = i and that = t i...Tii = -

and X= xi, the value of Ti  then is

o.i

" T ,"" , w , .' - ,. .- "- : - ' ,', . ". ". .' -' .. , - ,:, -, - w. ,.:,-.•-., ., ,. .... ' "'.'., ..-. -._-.. ,. ',,t, ,." .",, ,.. ',.'. ",._ ,,', .. -
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= t i I + 1  t

Equivalently, ti  is the solution of

(4.16) x i  .(tiltl,.. ti_1)

Association of TI,...,Tn will follow if we show that ti  increases in xk(k

< i). In order to do that, we can fix tl,...,tk_1 and express tk as a

function of xk and express tk+l,...,ti_ I as functions of tk (and of

xk+1,...,xi_1). Since, trivially, tk increases in xk, it suffices to show

that ti  increases in tk (recall that tl,...,tk_1 and xk,...,xi_1 are

held fixed).

Rewrite (4.16) as

k-1
(4.17) xi  - Ai(tl) - t T1=tl,..-,T _=tzl )

z ~ =2 zZ1I

i-i
I Ai (t -t _1IT1=t , . ,T._T =t _

1=k 
z

+ Ai(ti-ti-.Tl=tl,''. ,Ti-l=ti-l)

and notice that ti  is determined as the solution of (4.17). Clearly

(4.18) Ai(U T=tl,...,Ti=ti_1) increases in u 0 .

The LHS (4.17) is fixed (i.e., it does not depend on tk). If the condition

of Theorem 4.4 holds, that is, if for a fixed ti, RHS (4.17) decreases as

tk increases, then (using (4.18)) the solution ti  of (4.17) must increase

as tk increases. But this is what we wanted to prove.

• .- ,
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Remark 4.5. Theorem 4.4 should be contrasted with Theorem 4.7, p. 146, of

Barlow and Proschan (1975). They show that if for all ti,

(4.19) P(Ti > tilT 1 = tl,...,Ti_ 1 = ti_1 ) increases in tl,...,ti_1 , i = 2....n,

then- T1,..., Tn are associated. Their proof essentially constructs

TI""..T' as in (3.10) and (3.11) and then argues that (4.19) implies that

T'",...,T' are increasing functions of U,. ... Un of (3.10) and (3.11). In
1 n

proving our Theorem 4.4 we follow the same line of thought but apply it to

TI,...,Tn which arise from the total hazard construction described in (3.3)

and (3.4).

Remark 4.6. Shaked and Shanthikumar (1984b) showed that if for disjoint sets

I, J C {1,...,n} and fixed tl, tI' [such that t t and k c TO

(I or J may be empty),

(4.20) Xk((V ti) V ( V t-) + uITI :t I, Tj =t,.)

i I jCJ J
> A((V t.) V ( V tj)+utT1  u 0,

1C jCJ

then T1 ,...,Tn are associated. Below it is argued that (4.20) implies the

conditions of Theorem 4.4. Thus Theorem 4.4 provides a new route of proving

Theorem 5.2 (and Remark 5.5) of Shaked and Shanthikumar (1984b).

To avoid messy notation we consider the case n = 3 and show that (4.20)

implies (4.12), (4.13) and (4.14).

Proof that (4.20) = (4.12). From (4.20) we get

m ..
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(4.21) x 2 (t 1 +v1.) 4 x 2 (t1+vlT 1 =t 1 ,.), t i > 0, V > 0.

Integrating (4.21) with respect to v over [O,u] we obtain

(4.22) A2 (t 1 +U) - A2 (t 1 ) 4 A2 (ulTi-tl), u 0 0, t 1 > 0.

From (4.20) we also get

(4.23) x2 (t 1+u+vlT1--tl+u,.) 4 X2 (t1+u+vjT1--ti,.), t 1  0 0, u > 0, V ) 0.

Integrating (4.23) with respect to v over [O,t 2-t1-uJ we obtain

(4.24) A2 (t 2 -tl-ulT1=tl+u) 4 A2(t2-t1 Tj~tl) - A2(uITi-t), t 2 > t1+u > t1 > 0.

Adding (4.22) and (4.24) and rearranging one obtains (4.12). 11

Proof that (4.20) ==> (4.13). From (4.20) we get

(4.25) x3(t2+vjT 1=tl,.) < x3 (t 2 +vlTl=tl,T2 =t2,9), t 1  0 0, t 2  > 0,- u > 0, v > 0.

* 'Integrate (4.25) with respect to v over [O,u] to obtain

(4.26) A3 (t 2 +u-tlT=tl) - A3 (t 2 -tljT 1=tl) < A3 (ujT 1 tl,T2 :t 2 ),t 2 +u~t2 tl>O.

Condition (4.20) also yields

(4.27) x3 (t 2 +u+vlTI=t 1 ,T 2 =t 2 +u,.) < X3 (t 2 +u+vlT=tl,T2 =t 2 ,.),tl>O,t 2 0,u>O,v>O.

•-". .-",".- ".? i'. ' .- . .. " . . " . ". . '." '" - .".i.- .".". .*' '- -" - ". .- .". "- .- "."-1-"."-2-
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Integrate (4.27) with respect to v over [0,t 3-t2-u] to obtain

(4.28) A 3(t 3-t 2-UlTl=tl,T 2=t2 +U) 4 A3(t3-t2 1Tl=tl,T 2=t2 )

- A3(ujTl=tl,T 2=t2 ), t3 > t2 + u > t2  ti > 0.

Add 4.26) and (4.28) and rearrange to obtain (4.13). u

Proof that (4.20) ==> (4.14). The following follow from (4.20) [See Figure

4.2]:

(4.29) x3 (tl4vl.) x3(tl+vITl=tl,.), tI > 0, v > 0,

(4.30) x3(t1+u+VlTI=tl+u,.) 4 A3(tl+u+vlTl=tl,.), tI > 0, u > 0, v > 0,

(4.31) X3(2(x 2,tl) + vITl=t1 +u,.) 4 x3( 2(x2,t1)+V1Tl=tlT2=a2(x29 t0,.),

tI > 0, u > 0, v 0 O, x2 > 0,

(4.32) X3( 2(x2,ti +U)+vlT Il--t 1 +u, T2 =92 (x 2 ,t 1+u),.)

SY32 (x 29,tl +u)+VlTltl,T 2=42(x2,tl),.), tI > 0, x2 > 0, u > 0, v ) 0.

Integrate (4.29) with respect to v over [0,u] to obtain

(4.33) A3 (tl+u) - A3 (t1 ) 4 A3 (uTl=t), 0 4 tI 4 tI + u.

Integrate (4.30) with respect to v over [0, a2 (x2,t) - tI - u] to obtain

(4.34) A3( 2(x2,tl)-tl-UjTl~tl+u) 1c A3( 2(x2,tlI)-tllT I tl)

- A3(ulTI=t,), 0 4 tI  < tI  + UI a2(x2,tl).

Integrate (4.31) with respect to v over [0, 2 (x 2,t1 u)-a2(x 2,t1 )] to

®r
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obtain

(4.35) A3( 2(x2,t1+u)-t -uIT1--tl+u) - A3( 2 (x2,tl)-t1--UIT 1=tI+u)

4A3Pa2(x2,t l+ u )-V2 x2 ,t l )jT1I=t1,T2=a2(x2,tl)),

0 < 1 tI + u 4 2(x2,t1 ) < a2 (x2,tl+u).

Finally integrate (4.32) with respect to v over [0, t3 - 2 (x2,t1 +u)] to

obtain

(4.36) A3 t3-a2 (x2,t 1+U) T1 =t1,T2 =a2 (x2,t 1+u))

4 A3(t3-42(x2, ) I T 1 =t l ,T 2 :a 2 (x 2 ,t l ))

- A3 ( 2 (x 2 ,tl+)- 2 (x 2 ,t i)IT=tl,T2 :a 2 (x 2 ,t1 )),

0 t t1 <t 1 +u < 4 x2,tl) 4 2(x2,tl+u) 4 t3.

Add (4.33) - (4.36) and rearrange to obtain (4.14). ii

5. An application: stochastic ordering.

5.1. The bivariate case.

Let (SI,S 2 ) and (TI,T 2 ) be two nonnegative absolutely continuous

random vectors. The corresponding hazard rates and cumulative hazard

functions will be denoted as follows:

qi(t) = lir I P{t < S. t + AtIS 1 > t, S2 > t}, t 0, i = 1,2,
tAt 1

r (t) = 1 P~t < T < t + AtiT  > t, T2 > t), t 0, i = 1,2,

Q i(t) = r0 qi(u)du, t 0, i 1,2,

Ri(t) f ri(u)du, t 0, i = 1,2,

ql(tlt 2 ) = lim .- Pft < S1 < t + AtIS I > t, S2 = t 2}, t t2 )0,

' ','€ ; -/'""€" ":.'. i i .2""-"""" . " " ' " " "'" " " " ' " " ' """ " " ' " " " " ""O
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1

q2 (tItl) = lim I- P~t < S2 < t + AtIS 1=tl, S2 > t), t > t I > 0,
AtO 

1

rl(t t 2 ) = r m -I P{t < TI 4 t + AtIT I > t, T2 = t 2), t > t 2 > 0,
At4O a

r2 (t tl) = Ir - P{t < T2 < t + AtITl=tl, T2 > t}, t t1  ,
At+ 0

t 2+tQl(tlt2) = ft2 q1(ult2)du' t > 0, t 2 > 0,

t +t
O2(tIt I ) = ft q2(ultl)du, t > 0, t I > 0,

t2+, 'R R(tlt 2  : t 2  rl lt)du, t > 0, t 2 > O,

t +t
R2 (tlt I ) =ft I  r 2 (ultl)du, t > 0, tl> 0.

The inverses of Qi(.), Qi(.It), Ri(.) and Ri(.It) are defined in an

obvious manner as in Section 2.

Let X, and X2  be independent standard exponential random variables.

Define SI' as follows: On {QII(Xl) Q21(X 2 )} let

(5.1) SI 1 QII(Xl ) '

fl- 1

(5.2) $2 Q 1 (Xl) + Q21(X2 -Q2(QII(XI))IO1 (X1 )),

and on {Q 1 (XI) > Q21 (X2 )} let

(5.3) -1 (X2 ) + II(XI-Q(Q 2 1(X2)IQ2(X 2 ) ) ,

(5.4) "$ = 21(X 1

Similarly on {R 1 (XI) R21 (X2 )} let

l.... 
. . .. . . _ .... . -. - .
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(5.5) - R 1 1

(5.6) T2 -i 1(XI ) + R21(X 2"R2 (R1 (XI))IR 1 (X,)),

and on {R1I(XI) > R21 (X2) }  let

(5.7) T I - R2 (X2 ) + R, (X1-RI(R2 (X2 ))JR 2
1 (X2 )),

(5.8) T - (X

Theorem 5.1. Let (SI,$ 2 ) and (TI,T 2) be defined as in (5.1)- (5.8)

where X, and X2 are independent exponential random varibles. Then

(SJ'S 2 ) = (SI,2),
(TJ' ( ,2) st (TI,T2).

Proof: Apply Theorem 2.1 twice. ii

In (5.1) - (5.8) we use the total hazard construction twice: to construct

S and to construct T . Note that we use the same X1 and X2 for both

constructions. Thus, roughly speaking, we put S and T on the same

probability space. This enables us to compare them realization-wise as is

done, e.g., in the next theorem.

Theorem 5.2. If

(5.9) Q(w) > Rl(w), w > 0,

(5.10) Q2 (w) > R2 (w), w > 0,

(5.11) Q2 (sl} + Q2 (W-sl1S I ) R2 (w), w > 0,

(5.12) Q1 (s 2 ) + Q1 (w-s 2 1s2 )> R(W), w > s2 0 0,
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(5.13) Q2 (Sl) + Q2(w-S 1 Sl) > R2 (t1) + R2 (w-t1l tl), w > t1  s1  0,

(5.14) Q(S 2) + Ql(w-s2 s2 ) ; Rl(t 2 ) + Rl(w-t 2lt2 ), w > t2  , s2 )' 0,

then

(5.15) (SIS 2 ) t (TI,T 2).

Remark 5.3. The conditions of Theorem 5.2 simply state that at any time w

(no matter what the previous history is) the cumulative hazard of Si is

larger then the cumulative hazard of Ti, i = 1,2. The proof of Theorem 5.2

below uses the fact that, since the total cumulative hazards of S. and T.

by the time they failed must be equal (to Xi), then necessarily Si Ti

a.s., 1 = 1,2 (see Figure 5.1 for a typical realization when

Qll(Yl Q21(X 2)).

Proof of Theorem 5.2. We will show that

(5.16) S T1 a.s.

(5.17) $2 T2 a.s.

and the result then follows from Theorem 5.1 and (1.5).

Let X, and X2 be independent standard exponential random variables.

First consider the case Q-1 (X1 ) < Then

S. : Q
1  (XI ) ,

(5.18) 2 i + Q-1(X2 S
2 Q2 X2 -Q2 (^1 )1' 1 )

.
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If R 11 (X1 ) < R2 (X2 ) then Z Rl1 (X1 ) Q(x 1 ) ( 1  and (5.16)
(5.9)

follows. Also, in this case

(5.19) T2 = T1 + R 2(X 2 -R2 (T1 )IT 1 )

* Thus' T2 2 inftw > T1 :R2 (T1 ) + R2 (w-T1 1T1 ) > X2}
(5.19)

inf{w > S1 :Q2(S1 ) + Q2 (W-SS11S) X2} 1 2  and (5.17) follows.
(5.13) (5.18)

-1 -
If R1 (X1 ) > R2 (X2) then

(5.20) T2 = R2
1 (X)

(5.21) T1 = 2 + R 1 (X1-R1(T20 2)

By assumption, S1 
< S2 * Thus,

(5.22) S1 
<  inf{w > $ 1 :Q2 ($ 1 ) + Q2(w-SISI) ) X2}

< inf{w > S1 :R2 (w) X2}

(5.11)

Also, R2(S1 )(5 .1I)Q 2 (SI) Q2(Q11(X)) 2 , where the second inequality

follows from the assumption Q1
1 (X1 ) < Q2

1 (X2 ). Thus, since R2 (w) increases

in w) 0,

(5.23) inf{w > SI:R 2 (w) > = inf~w > O:R 2 (w) > X2}

(5.20) (5.21)

Combining (5.22) and (5.23) it follows that S1 < S2 < T2 < T1  and both

(5.16) and (5.17) follow.

The proof of (5.16) and (5.17) for the case 011 (X ) > Q21 (X ) is

'1 1

" , % "" " ," ." " ,"", % " "- "'Z " " ." ."". ". " - . ."". ". "" ."". " . .'". ' "' --" . .. . . ..
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similar, using (5.10), (5.19), (5.12) and (5.9) instead of (5.9), (5.13),

(5.11) and (5.10) respectively. ii

5.2. The multivariate case.

Let S = (SI'...'n) and T = (T 1 ... ,Tn) be nonnegative absolutely

continuous random vectors. Denote by q (slSJ : ) the conditional hazard

rates of S defined as in (3.1) and denote by Qi(slS :s) the conditional

cumulative hazards of S defined as in (3.2). Similarly denote the

conditional hazard rates and cumulative hazards of T by

ri(tIT = j,.) and Ri(tI]J  = j)-

Using the total hazard construction (see Section 3) one can express

and T (such that S st S and T st T) as functions of the same

independent standard exponential random variables XI,...,Xn. Using these

S and T one can prove the following result using the method of the proof

of Theorem 5.2 (but with more involved notation). We omit the details.

Theorem 5.4. If for 1 4 t < j < n, 0 < sI  ... <sj, 0 < t t... t

0 < s i < ti, i = l,...,z, and all permutations T_ of (1,...,n),

j-1

(5.24) il (Si+l-SijS (1) = Si"'" S(i) = s i )

-i
+-k (w-sj I SIT(1) = Sl.. 'f(i) =sj) t

Rk(t i+1-tiT(1) = t 1 , .,T (i t i

+ Rk(w-t jT (1) = ti, ... T '() = tZ)

whenever w > s V t (where empty sums are identically zero) then

(5.25) S t T
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The proof of Theorem 5.4 consists of constructing S and T by (3.3)

and (3.4) using the same XI,...,Xn (that is, putting S and T on the same

probability space) and noticing that (5.24) implies that realization-wise

S 4 T . The result then follows from (1.5).

Remark 5.5. Using the standard construction (3.10) and (3.11) one can show

the following analog of Theorem 5.4 (see, e.g. Veinott (1965) or Arjas and

Lehtonen (1978)): If

(5.26) SI T1

and for s1  t1 .... ,s1 t

(5.27) [SiJS 1 : sl,..,Si_l Si_] [TiT tl,...,Ti_ = till,

i = 2,3,...,n, then S t T. The idea of the proof of (5.26) + (5.27) =>

(5.25) is the sane as the proof of Theoren 5.4: Using the same UI,..., Un  of

(3.10) and (3.11), put S and T on the same probability space and note that

(5.26) and (5.27) imply that realization-wise S' < T'

Remark 5.6. Shaked and Shanthikumar (1934b) proved that if for all disjoint

sets I, J C {1,...,n} such that F -T and for all fixed v > Oe the

following holds:

(5.28) 1k (uIS I  =  Vl S xJ = )=

r k(tiTI v ,.), u ( V v.) V ( V vi),
": i %

l ij - . . .. . . . .. - . . .. . . ... . . .. .. .. .. . ... . . ... .. .. : .. : . . .. -. ... .. .. ... . ... ., . . . -.
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whenever v I >V I u > 0 and k c I Uj (I or d may be empty) then

S tT.

Theorem 5.4 provides a new way of proving their result. In fact Theorem

5.4 is a stronger result than Theorem 3.1 and 3.4 of Shaked and Shanthikumar

(1984b) because, as will be argued shortly, (5.28) implies (5.24).

'To see that (5.28) implies (5.24) suppose that in (5.24), = (1,...,n)

and order the j si's and Z ti's of (5.24) in an increasing order

0 4 v1 4...<vj+ . where each vm is either si  or ti  for some i. Also

set v0 = 0 and vj+,+ I = w (the w of (5.24)). Consider some interval

S[vm,vm+l). Let I = {i:ti<vm} , J = {ieT, s, < ym } . Note that if

i e I then si 4 vm  because in (5.24), s. < ti  for i = 1,..., . Let

u c [Vmvm+I) and apply (5.28) with the above I and J and vI =

±vI tl,_ = to obtain

" (5.29) qk(uj 1  = , = ,j) uI> = t , -

Integrating (5.29) with respect to u over [Vm, Vm+l) and adding the

resulting integral inequalities over m = 0,...,j + z one obtains (5.24) with

= (1,2,...,n). The proof for other permutations 7r is similar.

For example, to obtain (5.9) note that (5.28) implies

(5.30) q1 (ul) r1 (uI"), u 0.

Integrate (5.30) with respect to u over [O,w) to obtain (5.9). To obtain

(5.11) note that (5.28) implies

(5.31) qI(uSI : S1,*) 
< r (uI"), u s.

4.
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Integrate (5.30) with respect to u over [O,Sj) and integrate (5.31) with

respect to u over [sl,w) and add the two resulting integral inequalities to

obtain (5.11).

6. Further applications.

6.1. Multivariate increasing failure rate average (MIFRA) distributuions.

Theorems 4.1, 4.3 and 4.4 give conditions under which the distribution

of T1,...,Tn can be expressed as the distribution of increasing functions of

independent exponential random variables. If these increasing functions are
n

also subhomogeneous (a function g: R n + R+ is subhomogeneous if

g(at) 4 a g(t) for all a e [0,1], t > 0, see, e.g., Marshall and Shaked

- (1982)) then T satisfies the MIFRA condition of Block and Savits (1980).

For example in (2.21) [when a a ', a < '] T1 and T2 are expressed as

incresing subhomogeneous functions of X1 and X2. Hence (T1,T2 ) of Example

1 (when a < a', a 4 B') is MIFRA. This result has been obtained also by

Marshall and Shaked (1982) and Shaked (1984). A special case of this result

can be found in Block and Savits (1980).

6.2. Variance reduction in simulation of dependent variables.

Let S = (S1 ,...,S ) and T = (T1,... ,T ) be random vectors and let
n n

n ng:R + R and h:R + R be monotone in the same (or the opposite)

direction. Due to theoretical or technical reasons, the expected value

(6.1) E[g(S) - h(T)]

may be hard to compute in some applications. One possible recourse is a

simulation of g(S) and h(T). That is, k independent rpplications of
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S and T are generated using pseudo-random numbers, and (6.1) is then

estimated by averaging the k realizations of g(S) - h(T).

Rubinstein, Samorodnitski and Shaked (1985) have considered an efficient

method of simulating g(S) and h(T) when the distributions of S and T

satisfy (4.19). Their method is based on the fact that when (4.19) holds,

then- g(S) and h(T) can be represented as increasing functions of
independent uniform [0,13 random variables, using the standard construction

(3.10) and (3.11). Then, by putting S and T on the same probability

space, one can reduce the variance of the Monte Carlo estimate of

E(g(S)-h(T)).

The same idea may apply for random vectors with distributions satisfying

the condition of Theorem 4.4. Under this condition too it is possible to

represent g(S) and h(T) as increasing functions of independent random

variables, put them on the same probability space and reduce the variance of

the Monte Carlo estimate.

In some applications, even if both (4.19) and the condition of Theorem

4.4 hold, the total hazard construction (3.3) and (3.4) may yield simpler

expressions than the standard construction (3.10) and (3.11). In such cases

use of the total hazard construction is prefarable. A study of these

ramifications of the total hazard construction is planned.

6.3. Multi-unit imperfect repair.

Shaked and Shanthikumar (1984a,b) considered a model for imperfect repair

• .of multi-unit systems. In that model, n units (whose original lives

TI,...,Tn have absolutely continuous distribution) start to live at the same

time. Upon failure an item undergoes a repair and is scrapped if the repair

is unsuccessful. If i items (i = 0,1,...,n-1) have already been scrapped,
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then, with probability Pi+1 the repair is successful and the item continues

to function - but it is only as good as it was just before the repair - and

the other items "do not know" about these failure and repair. With

probability 1-Pi+l the repair is unsuccessful and the item is scrapped.

Mathematically, if the original lives have the conditional hazard rates

(-IT, =tl,.), k T, then the resulting lives T1,...,T have the

conditional hazard rates Xk given by

(6.2) k(._I tI ,) pII+1Xk(*ITI :tl,.), k c T,

where III is the cardinality of I.

From (6.2) it follows (see (3.2)) that k(tl!I = t), k £ T -- the

hazard accumulated by Tk during the time interval

V ti9 V t. + t], t > 0, -- is given by
i£I i el 1

(6.3) Wk(tTI =tl) P 1 +1 Ak(tTI =tl), k c T.

Using (6.3), various results of this paper can be restated for

TI,..., Tn. For example, if P1 = P2 =...=Pn and the Ak's satisfy the

conditions of Theorem 4.4 then Tl,...,Tn are associated. Similarly, two

random vectors resulting from application of inperfect repair can be compared

stochastically if the original random vectors satisfy the conditions of

Theorem 5.4. Proposition 6.6 of Shaked and Shanthikumar (1984b) can be proven

using these ideas.

-f.

-' . w J' " #' t -" ** '-' .-", .. " ' W '. " - .. . 'S* -5%. . . . . .-. , ' :'-,- . "_ -" _.' ." '



Ackn owl edgmen t.

After the paper was written, when it was shuttling between Arizona and

Berkeley for final touch-ups, we learned about the papers by Norros (1983,

1984) which contain results similar to some of the results of the present

paper. For example, the main mathematical tool in Norros (1984) is a

.1 compensator representation" which is essentially the same as our "total

hazard construction". Results which are similar to Theorems 4.4 of 5.4 of the

present paper, as well as conditions for MIFRA (see Section 6.1 of the present

. paper) and a notion of a-improvement which is related to our definition of

imperfect repair, can be found in Norros (1984). Also, we learned about Aalen

and Hoem (1978) and Jacobsen (1982) from Norros (1984). We thank Ilkka Norros

for providing us with Norros (1983, 1984) and we thank Elja Arjas who

initiated our correspondence with Norros.

V.

.- 4 **. .L I"A~ A - C.. 7 ~ ~ ~ A.A



References.

[1] Aalen, 0. 0. and Hoem, J. M. (1978). Random time changes for
multivariate counting processes. Scand. Actuarial J., 1978, 81-101.

[2] Arjas, E. (1981). The failure and hazard processes in multivariate
reliability systems. Math. Oper. Res., 6, 551-562.

[3] Arjas, E. and Lehtonen, T. (1978). Approximating many server queues by
means of single server queues. Math. Oper. Res., 3, 205-223.

[4] Arjas, E. and Norros, I. (1984). Life lengths and association: a
dynamic approach. Math. Oper. Res., 9, 151-158.

[5] Barlow, R. E. and Proschan, F. (1975). Statistical Theory of
Reliability and Life Testing: Probability Models. Holt, Rinehart and
Winston, New York.

[6] Block, H. W. and Savits, T. H. (1980). Multivariate IFRA distributions.
Ann. Prob., 8, 793-801.

[7] Cox, D. R. (1972). Regression models and life tables (with discussion).
J. R. Statist. Soc., B, 34, 187-202.

[8] Esary, J. D., Proschan, F. and Walkup, D. W. (1967). Association of
random variables, with applications. Ann. Math. Statist., 38, 1966-
1974.

[9] Freund, J. E. (1961). A bivariate extension of the exponential
distribution. J. Amer. Statist. Assoc., 56, 971-977.

[10] Jacobsen, M. (1982). Statistical Analysis of Counting Processes,
Lecture Notes in Statistics, 12, Springer Verlag, New York.

[11] Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics,
Continuous Multivariate Distributions. Wiley, New York.

[12] Law, A. M. and Kelton, D. W. (1982). Simulation Modeling and Analysis.
McGraw Hill, New York.

[133 Malik, H. J. and Abraham, B. (1973). Multivariate logistic
distributions. Ann. Statist., 1, 588-590.

[14] Marshall, A. W. and Shaked, M. (1982). A class of multivariate new
better than used distributions. Ann. Prob., 10, 259-264.

[15] Norros, 1. (1983). Systems weakened by failures. Submitted for

publication.

[16] Norros, 1. (1984). A compensator representation of multivariate life
length distributions, with applications. Submitted for publication.

[17] Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. Wiley,
New York.



[18] Rubinstein, R. Y., Samorodnitsky, G. and Shaked, M. (1985). Antithetic
variates, multivariate dependence and simulation of stochastic systems.
Management science, to appear.

[19] Schechner, Z. (1984). A load-sharing model: the linear breakdown rule.
Naval Res. Log. Quart., 31, 137-144.

[20] Shaked, M. (1977). A concept of positive dependence for exchangeable
random variables. Ann. Statist., 5, 505-515.

[21] Shaked, M. (1984). Extensions of the Freund distribution with
applications in reliability theory. Oper. Res., 32, 917-925.

[22] Shaked, M. and Shanthikumar, J. G. (1984a). Multivariate imperfect
repair. Technical Report, Department of Mathematics, University of
Arizona.

[23] Shaked, M. and Shanthikumar, J. G. (1984b). Multivariate hazard rates
and stochastic ordering. Technical Report, Department of Mathematics,
University of Arizona.

[24] Veinott, R. (1965). Optimal policy in a dynamic, single product, non-
stationary, inventory model with several demand classes. Oper. Res.,
13, 761-778.



I

IfI


